	
 		

	
		
		
		
			
			
		rotate.pdfjpgconverter.com

			
				
		
		
	
	
		
 		
			
	
	
	
 	
	
	
 	
 		
		

		
			

			
				
				
	
rotate.pdfjpgconverter.com

			
			

		
		

		
		

	
	
	

ASP.NET PDF Viewer using C#, VB/NET

After the first time the page is requested, the actual markup produced during page processing is put into the Output Cache. In this event trap, the ASP .NET runtime examines the details of the request, and sees if there s a corresponding entry in the cache. When it finds a matching entry, the runtime retrieves that pregenerated HTML from the cache, and sends it down the output stream. An instance of the Page object that would normally handle the request is never even created. This can improve the performance of your application by many orders of magnitude. Output caching can be declared at the UserControl level as well, allowing you to cache static portions of your page, while dynamically generating the parts that are unique across users and requests. The VaryByParam attribute, when used with the value of *, results in a different entry in the cache for each unique value carried in the URL as a query string, and for each different form value in an HTTP Post. This powerful facility can be used to cache each unique version of a page, even if its content is dynamically generated based on input variables such as these. While output caching is highly recommended, as it can vastly improve the performance of your site, this event is not a common one to trap and extend the pipeline with.

open source qr code library vb.net,
barcodelib.barcode.winforms.dll download,
winforms code 128,
ean 128 vb.net,
vb.net ean 13,
barcode pdf417 vb.net,
itextsharp remove text from pdf c#,
find and replace text in pdf using itextsharp c#,
vb.net generate data matrix code,
c# remove text from pdf,

Since the method has one argument, we also need to use SelectParameters to specify what value should be passed as an argument to our function We want to take the argument from the URL query string so we can use QueryStringParameter provided by ASPNET It has several attributes; the most important are QueryStringField, which sets the name of the argument in the URL address (id in our example), and Name, which has to match the parameter name of the GetProducts function in our F# module We looked only at the ASPNET page for displaying the products in a specified category, but to make the application complete, we also need a page that will list all the categories using the GetCategories function To do this, you simply need to create a page similar to Categoryaspx and modify a few details, so we do not show it here.

In this section, we ll highlight the differences between the SQLData and ORAData interfaces. Note that there may be times when you have to use ORAData for example, if you want to create a custom class for a nonstandard Oracle-specific type. In practice, there are no major advantages or disadvantages to using either approach. The main advantage of using the SQLData interface, at least in theory, is that it is a JDBC standard and makes your Java code more portable across databases. However, at the time of this writing, the implementation and use of objects in different databases varies so much that the majority of such code contains vendor-dependent code anyway. Using the ORAData and ORADataFactory interfaces, on the other hand, has the following advantages (none of which is really earth-shattering): The ORAData interface has more flexibility than the SQLData interface. It lets you provide a mapping between Java object types and any SQL type supported by the oracle.sql package. For example, you can use it if you want to create a custom class for a nonstandard Oracle-specific type such as oracle.sql.BFILE. The ORAData interface does not require a type map to map the object type to Java classes. According to the documentation, using the ORAData interface leads to better performance since ORAData works directly with the internal format the driver uses to hold Oracle objects. This means there is no conversion required to hold the data. The tests I conducted to verify this statement were not conclusive, as in some cases, I actually found SQLData to be faster. So my advice is that you should use this criterion for choosing between the two approaches in your application only after running appropriate benchmarks in the context of your application.

As the last step, Listing 14-9 shows the web configuration file Listing 14-9 webconfig: Configuration of the Sample Database Viewing Application < xml version="10" > <configuration> <connectionStrings> <!-- Connection string for the Northwind database --> <add name="NorthwindData" providerName="SystemDataSqlClient" connectionString=". database connection string ." /> </connectionStrings> <systemweb> <compilation><assemblies> <!-- Referenced NET 35 assemblies required by F# Linq --> <add assembly="SystemCore, Version=3500, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> <add assembly="SystemDataLinq, Version=3500, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> <add assembly="SystemXmlLinq, Version=3500, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </assemblies></compilation> </systemweb> <systemcodedom> <compilers> <compiler language="F#;f#;fs;fsharp" extension="fs" type="MicrosoftFSharpCompilerCodeDomFSharpAspNetCodeProvider,.

		

	
	
		
		

	
				
				
		 Copyright 2020.
	

	
	

	

	
	
	
	

